AD-A045 938 MASSACHUSETTS INST OF TECH CAMBRIDGE ELECTRONIC SYST--ETC F/G 9/4
JOINT SOURCE AND CHANNEL CODING, (U) SEP 77 J L MASSEY ESL-P-773 N00014-75-C-1183 UNCLASSIFIED NL OF | ADA045938 END DATE FILMED



| 5 |   | 5           |
|---|---|-------------|
| < | _ | )           |
| L | 1 | بر          |
| : | = | <u>ٿ</u> ــ |
| L | _ | -           |
| _ |   |             |

| SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)                                                                        | IFIEN                                             |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
| REPORT DOCUMENTATION PAGE                                                                                                       | READ INSTRUCTIONS BEFORE COMPLETING FORM          |  |  |  |  |
| 1. REPORT NUMBER 2. GOVT ACCESSION NO.                                                                                          | 3. RECIPIENT'S CATALOG NUMBER                     |  |  |  |  |
| 4. TITLE (and Subtitle)                                                                                                         | 5. TYPE OF REPORT & PERIOD COVERED                |  |  |  |  |
| Joint Source and Channel Coding                                                                                                 | Paper, September 1977                             |  |  |  |  |
| (14                                                                                                                             | ESL-P-773                                         |  |  |  |  |
| 7. Author(s)                                                                                                                    | B. CONTRACT OR GRANT NUMBER(S)                    |  |  |  |  |
| James L./Massey                                                                                                                 | N00014-75-C-1183                                  |  |  |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                     | 10 COOCDAN ELEMENT BROJECT TASK                   |  |  |  |  |
| Massachusetts Institute of Technology                                                                                           | 10. PROGRAM ELEMENT, PROJECT, TASK                |  |  |  |  |
| Electronic Systems Laboratory                                                                                                   | Program Code No. 5T10 ONR Identifying No. 049-383 |  |  |  |  |
| Cambridge, Massachusetts 02139                                                                                                  |                                                   |  |  |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Projects Agency                                               | September 1977                                    |  |  |  |  |
| 1400 Wilson Boulevard                                                                                                           | 13. NUMBER OF PAGES                               |  |  |  |  |
| Arlington, Virginia 22209                                                                                                       | 121121                                            |  |  |  |  |
| 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) Office of Naval Research                             | 15. SECURITY CLASS. (of this report)              |  |  |  |  |
| Information Systems Program                                                                                                     | UNCLASSIFIED                                      |  |  |  |  |
| Code 437 Arlington, Virginia 22217                                                                                              | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE        |  |  |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                     | L                                                 |  |  |  |  |
| Approved for public release; distribution unlimited.                                                                            |                                                   |  |  |  |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro                                               | NOV 2 1977                                        |  |  |  |  |
| 18. SUPPLEMENTARY NOTES                                                                                                         | F                                                 |  |  |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                                              |                                                   |  |  |  |  |
| data compression error correcting codes                                                                                         |                                                   |  |  |  |  |
| source coding                                                                                                                   |                                                   |  |  |  |  |
| channel coding                                                                                                                  |                                                   |  |  |  |  |
| 20. ABSTRACT (Continue on reverse side II necessary and identity by block number) The advantages and disadvantages of combining | the functions of source coding                    |  |  |  |  |
| ("data compression") and channel coding ("error correction") into a single coding                                               |                                                   |  |  |  |  |
| unit are considered. Particular attention is given                                                                              |                                                   |  |  |  |  |
| sources and for channels, because their ease of imp desirable in practice. It is shown that, without 1                          |                                                   |  |  |  |  |
| source/channel linear encoder may be used when the                                                                              |                                                   |  |  |  |  |
| reproduction of the source at the destination. On                                                                               |                                                   |  |  |  |  |
| that in general there is an inherent and significan                                                                             |                                                   |  |  |  |  |

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20.

source/channel linear encoder is used when the goal is relaxed to reproduction of the source within some specified non-negligible distortion.



Odd Even Spalle for Pagenumber and Running Head \_\_\_\_\_1 (Preprint of paper to appear in Communication Systems and 7 Random Process Theory (Ed. J. K. Skwirzynski), NATA Advances 8 Study Institutes Series, Noordhoff Int. Publ. Co., Leyden,  $\overline{9}$  The Netherlands. This NATO Institute took place in Darlington, 10 England, August 8-20, 1977.) First Line of Title \_\_\_\_ JOINT SOURCE AND CHANNEL CODING\* James L. Massey Visiting Professor of Electrical Engineering Authors' Affiliations and Computer Science Massachusetts Institute of Technology Cambridge, Massachusetts U.S.A. 23 ABSTRACT. The advantages and disadvantages of combining the func-First Line of Text ---24 tions of source coding (\*data compression\*) and channel coding 25 (\*error correction\*) into a single coding unit are considered. 26 Particular attention is given to linear encoders, both for sources and for channels, because their ease of implementation makes their 28 use desirable in practice. It is shown that, without loss of optimality, a joint source/channel linear encoder may be used when 30 the goal is the distortionless reproduction of the source at the 31 destination. On the other hand, it is shown that in general there  $\underline{32}$  is an inherent and significant loss of optimality if a joint source/

## 38 1. INTRODUCTION

35 tortion.

 $\frac{36}{37}$ 

Our aim in this tutorial paper is to treat the separability of the two basic coding functions that arise in communications, namely source coding and channel coding, first in the general case and then in the important practical case when these functions are both linear. We shall find that the desirability of joint linear source/channel coding is closely (and, to us, surprisingly) linked to the degree of fidelity specified in the reconstruction of the source at the destination.

33 channel linear encoder is used when the goal is relaxed to repro-34 duction of the source within some specified non-negligible dis-

<sup>\*</sup>This research was supported by the Office of Naval Research under Contract ONR-N00014-64-C-1183.



Fig. 1 A Digital Communications System with Separate Source and Channel Coding

It will be noted that there are three different subscripts on 26 the various symbols shown in Fig. 1, namely, i, j, and k. We use 27 this artifice to distinguish between sequences that may not be 28 equi-numerous over a long time inverval. For instance, there may be more source output digits per second, say, than encoded source 30 digits per second--in fact, we hope that there are many more so 31 that the source encoder is doing well its task of "data compres-32 sion". Also for instance, there may be fewer encoded source digits per second than encoded channel digits per second -- we may be forced into this situation by the need to insert redundancy 35 into the channel input digits so that the channel decoder can do 36 well its task of "error correction".

Roughly speaking, we may use the terms "source coding", "data 39 compression", and "redundancy removal" as synonymous. Again rough-40 ly speaking, we may use the terms "channel coding", "error cor-41 rection", and "redundancy insertion" as synonymous. A wag might 42 accuse the International Brotherhood of Information Theorists of 43 featherbedding: it provides jobs for those who take out redundancy and jobs for those who put redundancy back in, at least 45 when source coding and channel coding are performed separately as 46 shown in Fig. 1. But it is a serious question to ask whether one 47 box, a "joint source/channel encoder" as shown in Fig. 2, couldn't 48 do a better job (or at least do the same job more economically) than does the tandem combination of the "source encoder" and "chan-50 nel encoder" boxes in Fig. 1. As we shall soon be seeing, this simple question has a rather complicated answer.

## BEST AVAILABLE COPY

First Line of Text -

25

38

Working Size Type Area: 13 1/2 x 52 Picas (To be shot at 90 %) Final Size Type Area 2 : 10 x 47 Picas : 6 1 2 x 9 7/8 inches (165x25) toma Local Frim St.



As characteristic as the generality of the above-stated sepa-45 rability result of Shannon is the fact that his 1948 paper gives 46 little clue as to how complex an efficient communications system 47 becomes when the source and channel coding functions are separated 48 as in Fig. 1. With tongue-in-cheek, we now assert:

Theorem 1: For a given efficiency (measured in number of source 1 letters transmitted per use of the channel and fidelity (measured 1 in the quality of the source reproduction at the destination)

19

Even Space for Pagentimber and Running Head ->\_1 achievable by separate source and channel coding for a given source and a given channel, there always exists a joint source/ channel coding scheme for the same source and channel that is at least as efficient, that gives at least as much fidelity, and is no more complex than the separate coding system. Proof: Let Fig. 1 be a diagram of the hypothesized separate sys-10 tem. Then, in Fig. 1, draw a large box to enclose the "source First Line of Title - II encoder" and "channel encoder". Draw a second such box to enclose 12 the "channel decoder" and "source decoder". Call the first new 13 box the "source/channel encoder" and call the second new box the 14 "source/channel decoder". You have just constructed a joint 15 source/channel coding system that satisfies the assertion in the Authors' Names  $\rightarrow \frac{16}{17}$  theorem. (Naturally, you might be able to build a simpler joint system that works at least as well; in fact, you might be able to Authors' Affiliations  $\longrightarrow \frac{18}{19}$  build a far simpler system!) Its triviality not withstanding, Theorem 1 does illuminate 21 the chief attractive feature of joint source/channel coding, namely, the possible reduction in complexity compared to a similar-First Line of lext —  $\frac{23}{24}$  ly-performing system with separate source and channel coding. We will pursue this point further, but not without first giving a 25 caveat: the reduction in complexity is purchased by a loss in 26 flexibility! If one opts for a jointly coded system, he can no 27 longer easily adapt his system later to a different source; in the 28 separately designed system, one could continue to use the same 29 channel coding subsystem, changing only the source encoder to the 30 source encoder matched to the new source. Telephone companies 31 worldwide are beginning to experience how painful this loss of 32 flexibility can be. Most telephone systems were originally designed as a joint source/channel coding system (even if the designers 34 were unawares that they were doing "coding") for transmitting the 35 voice source over a narrowband channel. As more and more of their 36 customers are changing from voice sources to data sources, the 37 telephone companies are madly scrambling to adapt their communica-38 tions brontosaurus to its new environment. 39 10 2. DEFINITIONS AND PRELIMINARIES +1 So that we can begin to speak more precisely as engineers should, we state here a few definitions. 4-1 A binary memoryless source (BMS) with parameter q is a device

whose output is a sequence U1, U2, U3, ... of statistically inde-

This is the only source that we shall consider hereafter; it is

pendent, binary-valued random variables such that

 $P(U_i = 1) = 1 - P(U_i = 0) = q,$ 

49 50

|                         | Eve                                                      | general enough for all our purposes even if it is a realistic model of only few actual information sources. When q = 1/2, the BMS is called the binary symmetric source (BSS); this very special type of BMS will play a key role in what follows. In fact, the goal of the source/encoder in Fig. 1 is to make its output a good approximation to the output of a BSS.  A binary symmetric channel (BSC) with cross-over probability p is memoryless channel which accepts binary digits at its input and emits binary digits at its output according to the following conditional probabilities:  P(Y = 1   X = 0) = P(Y = 0   X = 1) = p  P(Y = 1   X = 1) = P(Y = 0   X = 0) = 1 - p.  Again, although the BSC is a realistic model for only a few actual discrete channels, it is general enough for our purposes.  Next, we recall some well-known results from information theory1,2,3,4.  Let h(x) = - x log <sub>2</sub> x - (1 - x) log <sub>2</sub> (1 - x) (where 0 = x = 1) be the usual binary entropy function. Then the entropy (or "rate") of the BMS is given by  H(U) = h(q) bits/letter  where "letter" means a binary digit emitted by the source. According to Shannon's Noiseless Coding Theorem, H(U) is the lower limit of rate, measured in encoded binary digits per source letter, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Space for Pagenumber    | +                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and Running Head        | 1 [                                                      | The second secon |
| 9                       |                                                          | -5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 3                                                        | general enough for all our nurnoses even if it is a realistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| . H = 1 / 1 / 1 / 1 / 1 | · - r                                                    | model of only few actual information sources. When $a = 1/2$ the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | 5 1                                                      | BMS is called the binary symmetric source (BSS): this very special                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 6                                                        | type of BMS will play a key role in what follows. In fact, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 7                                                        | goal of the source/encoder in Fig. 1 is to make its output a good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 8                                                        | approximation to the output of a BSS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | 9                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | 10                                                       | A binary symmetric channel (BSC) with cross-over probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| First Line of Title     | 11                                                       | p is memoryless channel which accepts binary digits at its input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | 12                                                       | and emits binary digits at its output according to the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | 13 1                                                     | conditional probabilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 14                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | 10                                                       | P(Y = 1   X = 0) = P(Y = 0   X = 1) = p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Authors' Names          | 10                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | 11                                                       | $P(Y = 1 \mid X = 1) = P(Y = 0 \mid X = 0) = 1 - p.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Authors' Affiliations   | 10                                                       | Again 'although the DCC is a marlistic model for any a face of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | $\frac{19}{20}$                                          | discrete channels, it is general enough for our numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | 21                                                       | discrete channels, it is general enough for our purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 99                                                       | Next, we recall some well-known results from information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | 93                                                       | theoryl,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| First Line of Text      | 2+                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | 25                                                       | Let $h(x) = -x \log_{10} x - (1 - x) \log_{10} (1 - x)$ (where $0 = x = 1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | $\overline{26}$                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 27                                                       | be the usual binary entropy function. Then the entropy (or "rate")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 28                                                       | or the BMS is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 29                                                       | H(II) = h(a) hits/letter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | <u>30</u> .                                              | n(o) - n(q) bits/fettel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | 31                                                       | where "letter" means a binary digit emitted by the source. According to Shannon's Noiseless Coding Theorem, H(U) is the lower limit of rate, measured in encoded binary digits per source letter, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | 32                                                       | ing to Shannon's Noiseless Coding Theorem. H(U) is the lower limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 33                                                       | of rate, measured in encoded binary digits per source letter, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                          | a source encoder such that the source output sequence can be re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | 36                                                       | constructed from the encoder output with an arbitrarily-small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 97                                                       | specified per-digit error probability. Equivalently, 1/H(U) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 38                                                       | the upper limit of compression, measured in source letters per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 39                                                       | encoded binary digit, which can be achieved by coding schemes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 40                                                       | which convert the source output into a stream of binary digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 41                                                       | from which the source output can be reconstructed with an arbitra-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 12                                                       | rily-small specified per-digit error probability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 43                                                       | The conseits of the RCG is since her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | 1.1                                                      | The capacity of the BSC is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 38<br>39<br>40<br>41<br>42<br>43<br>44<br>15<br>46<br>47 | C = 1 - h(p) bits/use,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 16                                                       | ער אוניין איייין אונייין אווייין אוויין אוניין אוניין אוניין אונייין אוניין אוניין אוניין אוניין אוו |
|                         | 47                                                       | where a "use" means the transmission of a single binary digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 1.0                                                      | through the channel. According to Shannon's Noisy Coding Theorem,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 40                                                       | C is the upper limit of the rate of binary digits from a BSS (which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 201                                                      | we can think of as being the output of the source encoder in Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | -11                                                      | 1) per channel use for a channel encoder such that there is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 1                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Even Space for Pagenumber and Running Head -> 1 channel decoder which delivers the BSS digits with an arbitrarilysmall specified per-digit error probability. A very fundamental characterization of an information source is that given by its rate-distortion function. The rate-distortion function of the BMS is given by  $0 \leq D \leq \min(q, 1-q)$ bits/letter, h(q) - h(D)First Line of Title  $\longrightarrow \frac{11}{12}$ R(D) =0,  $D > \min(q, 1-q)$ Authors' Names  $\rightarrow \frac{\frac{13}{14}}{\frac{15}{17}}$ where D is the Hamming distortion defined by  $D = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P(\hat{v}_i \neq v_i),$ Authors' Affiliations  $\longrightarrow \frac{18}{10}$ struction. According to Shannon's Theorem for Coding Relative to a Fidelity Criterion, R(D) is the lower limit of rate, measured in binary digits per source letter, for a source encoder such that the source output sequence can be reconstructed from the encoder output with a distortion of D or less.

28
29
30
30
30
31
31
32
33
31
41
42
43
44
45
46
47
48
48
49
50
50
51 First Line of Text





4. JOINT LINEAR SOURCE/CHANNEL CODING--THE DISTORTIONLESS CASE

We now consider linear source encoding when the goal is reproduction of the source with a negligibly small (but non-zero) probability  $\varepsilon$  of digit error, so-called "distortionless coding".

Consider a BMS with parameter q where, for convenience with no real loss of generality, we take  $0 \le q \le 1/2$ . For the BSC with crossover probability p equal to q, we know there is a linear channel coding scheme (G, H<sub>c</sub>) such that, for any given  $\delta > 0$ , it has

$$R \stackrel{>}{=} C - \delta = 1 - h(q) - \delta$$

and achieves per-digit error probability  $\varepsilon$  or less in the estimated codeword  $\underline{X} = \underline{U}$  G. For this channel coding scheme, the per-digit error probability in the vector  $\underline{E}$  of Fig. 3 coincides with that in the vector  $\underline{X}$ . Thus, if we use these same two matrices as the G and H of the scurce coding scheme of Fig. 4, it follows that the per-digit error probability of the reconstruction  $\underline{U}$  is again the same, i.e., is or less. (Here we assume that the source coding scheme uses the same error pattern estimator as did the channel

Example: Suppose that we are to transmit, with negligibly small distortion, a BMS with q=.10 through a BSC with p=.10. Since h(.10)=0.47, it follows that a compression ratio of  $1/h(.10)=\frac{1}{42}$  2.13 can be approached, and that a channel coding rate of  $C=\frac{1}{43}$  1.10 = .53 can be approached. Thus, an overall efficiency of  $(2.13) \times (0.53) = 1.13$  source letters per channel use can be approached arbitrarily closely with joint source/channel linear coding, and no larger overall efficiency can be obtained by any distortionless coding scheme. In particular, for suitably large K, we can find an R=1/2 linear channel encoder specified by

Even

Odd

 $G_{c} = [I_{K}]$ 

50

Even

such that the overall distortion is smaller than the specified  $\frac{18}{19}$  G and H would each require implementation of P in separate source and channel coding. It is interesting to note that A is an N x N matrix, but that its rank is only N/2; this lack of full rank appears to be fundamental for useful linear joint source/channel We conclude that joint linear source/channel coding is a highly attractive approach when the goal is the distortionless JOINT LINEAR SOURCE/CHANNEL CODING--THE NON-NEGLIGIBLE With many actual data sources (e.g., with facsimile), one is often content to accept non-negligible distortion D in the source reproduction (e.g., D = 1/10). The rate-distortion function of the source specifies how such a relaxed demand on the fidelity of reconstruction can be translated into more efficient use of the channel, i.e., fewer uses of the channel for each source letter. Following recent work by Ancheta, we now show that, for a given D (non-negligibly) greater than zero, the performance of linear source coding is bounded in general strictly below the compression ratio 1/R(D) which Shannon has shown can be approached arbitrarily closely by some sort of source coding. 11 The key (and clever) idea in Ancheta's proof that linear source encoding for non-negligible distortion in inherently suboptimal was his exploitation of the fact that a linear source encoder "cannot see" a vector which lies in the null space of the matrix HT, i.e., its output is zero for any vector which could be the output of the linear device which implements the matrix G . Consider then the situation shown in Fig. 5, where we have merely supplemented the source coding system of Fig. 4 by adding some

Odd



Space for Pagenumber and Running Head -- > 1

EVER

linear joint source/channel encoding in the non-negligible distortion case.

First Line of Title -

Suppose that the N x N matrix A describes a linear joint source/channel encoder, for a BMS and BSC, which achieves distortion D (where D is not negligibly small). Suppose that A has rank r. Then one can always find an r x N matrix H of rank r and r x N matrix G of rank r such that A = H<sup>T</sup> G. Thus, we can consider the matrix H<sup>T</sup> as describing a linear source encoder and the matrix G as describing a linear channel encoder; the original linear joint source/channel encoder is equivalent to separate encoding with these derived linear encoders.

Authors' Names -Authors' Affiliations

Let D' be the best obtainable distortion when the BMS is reconstructed directly from the output of the linear source encoder  $H^{T}$ . It follows that D' > D, because the best service which the H. It follows that D. 2D, because the 2st special of the source encoder output to the best source reconstructor. Hence, the rate R, of the linear source encoder must satisfy (6) for the given distortion D.

First Line of Text .

38

The overall efficiency of the linear separate source/channel coding system (and hence also of the entirely equivalent original linear joint coding system) is  $\beta R_c = R_c/R_L \le 1/R_L$  source letters 28 per channel use, where the inequality follows from the fact that R < 1. On the other hand, there exist coding systems whose over-30 all efficiency approaches C/R(D) source letters per channel use, where C is the capacity of the BSC and R(D) is the rate-distortion gg function of the BMS. Thus, when, for a given D, the bound (6) specifies an R such that R > R(D)/C, then there is an inherent loss of optimality when linear joint source/channel encoding is g used. In other words, when the bound (6) gives an R which exceeds R(D) by a factor of more than 1/C, then linear joint source/channel 37 encoding is sub-optimum.

Example: Consider the BSS together with the BSC having p = .10,  $\frac{1}{10}$  and suppose that D = 1/4 is specified. Then, R(D) = h(1/2)-h(1/4)= 11.19. From (6), we find  $R_L = .50$ . Thus,  $R_L$  is (.50)/(.19) = 2.63 $\frac{42}{10}$  times as great as R(D). But 1/C = 1.89. Because 2.63 > 1.89, it follows that a linear joint source/channel coding system must be sub-optimum. To put it another way, any such linear joint coding system has an efficiency of at most  $1/R_{L} = 2$ , whereas there exist more general coding systems whose efficiency approaches C/R(D) = 17 2.79 source letters per channel use.

We should point out in closing that a joint linear source/ channel coding system can sometimes "accidently" be optimal when  $R_L$ , as given by (6), exceeds R(D) by a factor of only 1/C or less.

| . ,                                | Eve                                                                                                                                  | The the above example, if we had taken D = .10 rather than D = 1/4, we would have found R <sub>L</sub> = .80 and R(D) = .53 so that R <sub>L</sub> /R(D) = 1.51 < 1/C = 1.89. C/R(D)=1 is the maximum approachable efficiency. But the "straight wire" encoder, which merely transmits the BSS output directly over the channel, has efficiency 1 and distortion D = .10. We can consider this trivial but optimum coding scheme as the linear joint source/channel coding scheme with A = 1. (The reason for this accidental optimality is that the given BSC happens to be the appropriate "forward channel" for the given distortion D and the BSS, cf. Berger 1  References  1. Shannon, C.E., A Mathematical Theory of Communication, Bell System Technical Journal, 27, 379, 1948.  2. Fano, R.M., Transmission of Information, M.I.T. Press, Cambridge, Massachusetts, 1961. (page 3)  3. Gallager, R.G., Information Theory and Reliable Communication, John Wiley and Sons, New York, 1968.  4. Berger, T., Rate Distortion Theory: A Mathematical Basis for Data Compression, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.  5. Peterson, W.W., Error-Correcting Codes, M.I.T. Press, Cambridge, Massachusetts, 1961.  6. Ohnsorge, H., Data Compression System for the Transmission of Digitalized Signals, Proceedings IEEE International Conference on Communications, 485, 1973.  7. Ancheta, T.C., Jr., Syndrome-Source-Coding and its Universal Generalization, IEEE Transactions on Information Theory, 22, 422, 1026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | 1                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Space for Pagenumber               | +                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and Running Head                   | 1                                                                                                                                    | - 15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | 2_                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of the transfer of the transfer of |                                                                                                                                      | in the above example, if we had taken $D = .10$ rather than $D = 1/4$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                  | 5                                                                                                                                    | Would have found $R_L = .80$ and $R(D) = .53$ so that $R_L/R(D) = .53$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | 6                                                                                                                                    | 1.51 < 1/C = 1.89. $C/R(D)=1$ is the maximum approachable efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | 7                                                                                                                                    | But the "straight wire" encoder, which merely transmits the BSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | $\frac{8}{9}$                                                                                                                        | the can consider this trivial but optimum coding school                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                  | 9                                                                                                                                    | as the linear joint source/channel coding scheme with A = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T'                                 | 11                                                                                                                                   | The reason for this accidental optimality is that the given BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| First Line of Title                | 12                                                                                                                                   | happens to be the appropriate "forward channel" for the given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    | 13                                                                                                                                   | distortion D and the BSS, cf. Berger <sup>4</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                    | 14                                                                                                                                   | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | 16                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Authors' Names                     | 17                                                                                                                                   | . Shannon, C.E., A Mathematical Theory of Communication, Bell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Authors' Affiliations              | 18                                                                                                                                   | System Technical Journal, 27, 379, 1948.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                    | 19                                                                                                                                   | Fano P.M. Transmission of Information M.T.T. Dross Com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | $\frac{20}{21}$                                                                                                                      | bridge, Massachusetts, 1961. (page 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | $\frac{21}{22}$                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| First Line of Text                 | 23                                                                                                                                   | 3. Gallager, R.G., Information Theory and Reliable Communication,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| instructor rext                    | 24                                                                                                                                   | John Wiley and Sons, New York, 1968.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | $\frac{25}{96}$                                                                                                                      | A. Berger, T. Rate Distortion Theory: A Mathematical Pagic for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | 20                                                                                                                                   | Data Compression, Prentice-Hall, Englewood Cliffs, New Jersey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | $\frac{27}{28}$                                                                                                                      | 1971.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | 29                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | 30                                                                                                                                   | Massachusetts 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    | 31                                                                                                                                   | Massachusetts, 1901.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | $\frac{32}{33}$                                                                                                                      | 6. Ohnsorge, H., Data Compression System for the Transmission of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | 34                                                                                                                                   | Digitalized Signals, Proceedings IEEE International Conference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | 35                                                                                                                                   | on Communications, 485, 1973.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    | $\frac{36}{27}$                                                                                                                      | 7. Ancheta, T.C., Jr., Syndrome-Source-Coding and its Universal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | 38                                                                                                                                   | Generalization, IEEE Transactions on Information Theory, 22,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | 39                                                                                                                                   | 432, 1976.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | 40                                                                                                                                   | Wollman M.F. Convolutional Course Franchina INER Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                    | 41                                                                                                                                   | <ol> <li>Hellman, M.E., Convolutional Source Encoding, <u>IEEE Transactions</u><br/>on Information Theory, 21, 651, 1975.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | 13                                                                                                                                   | 0.1 1.1.201 1.1.011, 21, 031, 13/3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                    | 14                                                                                                                                   | 9. Ancheta, T.C., Jr., Bounds and Techniques for Linear Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | +5                                                                                                                                   | Coding, Ph.D. Thesis, Department of Electrical Engineering,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | 16                                                                                                                                   | University of Notre Dame, Notre Dame, Indiana, August, 1977.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | 18                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | 19                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | 50                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | $\begin{array}{c} 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | 52                                                                                                                                   | AND THE PROPERTY OF THE PROPER |